首页> 外文OA文献 >Nuclear Norm based Matrix Regression with Applications to Face Recognition with Occlusion and Illumination Changes
【2h】

Nuclear Norm based Matrix Regression with Applications to Face Recognition with Occlusion and Illumination Changes

机译:基于核规范的矩阵回归及其应用   遮挡和照明变化的识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recently regression analysis becomes a popular tool for face recognition. Theexisting regression methods all use the one-dimensional pixel-based errormodel, which characterizes the representation error pixel by pixel individuallyand thus neglects the whole structure of the error image. We observe thatocclusion and illumination changes generally lead to a low-rank error image. Tomake use of this low-rank structural information, this paper presents atwo-dimensional image matrix based error model, i.e. matrix regression, forface representation and classification. Our model uses the minimal nuclear normof representation error image as a criterion, and the alternating directionmethod of multipliers method to calculate the regression coefficients. Comparedwith the current regression methods, the proposed Nuclear Norm based MatrixRegression (NMR) model is more robust for alleviating the effect ofillumination, and more intuitive and powerful for removing the structural noisecaused by occlusion. We experiment using four popular face image databases, theExtended Yale B database, the AR database, the Multi-PIE and the FRGC database.Experimental results demonstrate the performance advantage of NMR over thestate-of-the-art regression based face recognition methods.
机译:最近,回归分析成为用于面部识别的流行工具。现有的回归方法都使用基于一维像素的误差模型,该模型逐个像素地表征表示误差,从而忽略了误差图像的整体结构。我们观察到遮挡和照度变化通常会导致低等级错误图像。为了利用这种低等级的结构信息,本文提出了一种基于二维图像矩阵的误差模型,即矩阵回归,前脸表示和分类。我们的模型使用最小核范数表示误差图像作为判据,并使用乘数法的交替方向法来计算回归系数。与目前的回归方法相比,所提出的基于核范数的矩阵回归(NMR)模型在减轻照明效果方面更健壮,而在消除由遮挡引起的结构噪声方面则更为直观和强大。我们使用扩展的Yale B数据库,AR数据库,Multi-PIE和FRGC数据库这四个流行的人脸图像数据库进行了实验。实验结果证明了NMR优于基于回归的最新人脸识别方法的性能优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号